
Managing Evolving Software Systems through Reuse Contracts

Carine Lucas, Patrick Steyaert, Kim Mens

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
http://progwww.vub.ac.be/

Email: clucas@vnet3.vub.ac.be, prsteyae@vnet3.vub.ac.be, kimmens@is1.vub.ac.be

Abstract Assessing the impact of changes in one part of the system to other parts remains one of

the most compelling problems in the maintenance of software. We show that this problem can be

relieved by making the implicit dependencies between different parts of the system explicit. We

propose to document the interaction protocol between different system parts by means of reuse

contracts, that can only be changed by formal reuse operators. Reuse contracts and their

operators facilitate managing the evolution of a software system by indicating how much work is

needed to update the system, by pointing out when and which problems might occur and where

and how to test and adjust the system.

Introduction

Minimisation of dependencies between different parts of a software system is by far the most successful

software engineering principle to cope with change and evolution. This principle is the foundation of,

amongst others, encapsulation, modularity, high cohesion and loose coupling. It enables reasoning about

different system parts separately as well as making changes to certain parts of a system without

interfering with the other parts. Details that are of no importance to other parts of the system are hidden

behind interfaces. As these other parts only rely on the information they get from these interfaces, they

are not affected when the structures and implementations behind the interfaces are changed.

While the continuous elaboration on this principle accounts for much of the progress that has been made

in software engineering, it can only take us so far. At a certain point in the evolution of a software

system, changes occur that cannot be kept local to one system part and thus interfaces do have to be

changed as well.

Assessing the impact of such non-local changes remains one of the most compelling problems in the

development of software. This can only be dealt with by a careful documentation of dependencies

between different system parts. Such a documentation must not only include which parts depend on

what other parts, but more importantly how they depend on each other. The former gives an indication

on where problems might occur upon change; the latter provides us information on what the problem is

(and thus on how it can be solved). The lack of this kind of documentation is a major impediment to the

management of evolving software systems with current methodologies.

We have studied this problem in the context of the propagation of changes to reusable assets to the

systems built on them. We propose to document the interaction between designers and users of reusable

assets by means of reuse contracts. Reuse contracts not only document how a system part can be

reused, but also how and why the part is actually reused by other parts. This is encoded by formal reuse

operators: extension, refinement and concretisation and their inverse operators: cancellation,

coarsening and abstraction.

Reuse contracts together with their operators facilitate managing the evolution of a software system by

indicating how much work is needed to update the system, by forecasting when and which problems

might occur, and by providing information on where and how to test and adjust the system.

Managing the Evolution of Class Hierarchies

The use of abstract classes with inheritance as reuse mechanism is undoubtedly the best-known

technique available today for structuring and adapting object-oriented software. Therefore, we first

focused on the problem of evolution of class-hierarchies as a more tangible case to explain the ideas

behind reuse contracts. In that context, reuse contracts and their operators describe the protocol between

managers and users of (abstract) class libraries. Reuse contracts of abstract classes provide an explicit

representation of the design decisions behind an abstract class, including information such as: which

methods can be sent to the class, which methods are invoked by what other methods, which methods are

abstract or concrete, relationships with other classes, ... Only information relevant to the design is

included. For example, auxiliary or implementation-specific methods are purposefully omitted from the

reuse contract.

Consider the example of a Collection hierarchy. A class Set defines a method add and a method

addAll to add a collection of elements simultaneously.

Class Set
method add(Element) = 0
method addAll(aSet:Set) =
 begin

for e in aSet do
self.add(e)

 end
end

When creating a subclass CountableSet of Set that keeps a count of the number of elements in the

set, we need information on which methods depend on what other methods, in order to decide which

methods need to be overridden. For example, if we know that addAll depends on add in its

implementation, it is sufficient to override the method add to take counting into account. Reuse

contracts for classes document exactly these dependencies. In a reuse contract each method has a

specialisation clause (in italics in the example below) that documents how it depends on the other

methods from this reuse contract (as in Lamping’s specialisation interfaces [Lamping93]). The reuse

contract is an interface description to which the implementation must comply. It provides information

that is typically not included in other methodologies.

reuse contract Set
abstract

add(Element)
concrete

addAll(Set) {add(Element)}
end

Reuse contracts can be manipulated by means of reuse operators. Concretisation makes abstract

methods concrete, extension adds new methods to a reuse contract and refinement refines the design of

some methods by adding extra information to their specialisation clause. These reuse operators not only

allow documenting the changes (and the intentions of these changes) made to a class, but a careful

investigation of their interactions also allows to predict and manage the effect of these changes.

Suppose we want to make an optimised version OptimisedSet of Set. In this version addAll stores

the added elements directly rather than invoking the add method to do this. This leads to inconsistent

behaviour in CountableSet when Set is upgraded to OptimisedSet; not all additions will be

counted. This is because the assumption that addAll invokes add, where CountableSet implicitly

depends on, is broken in OptimisedSet. Using the terminology of [Kiczales&Lamping92] we say that

addAll and add have become inconsistent methods. Although in this simple example the conflict can

easily be derived from the code, in larger examples this is not so trivial. In practice it should be possible

to detect such conflicts without code inspection. Reuse contracts and their operators provide the

necessary information by making the assumptions made by adaptors explicit. In the example, the reuse

contracts of CountableSet and OptimisedSet document how they were derived from Set, and thus

what assumptions about Set they rely on.

reuse contract CountableSet concretises Set
concrete

add(Element)
end

reuse contract OptimisedSet coarsens Set
concrete

addAll(Element) {-add(Element})
end

The fact that add and addAll have become inconsistent can be detected directly by inspecting the

reuse contracts. OptimisedSet is a coarsening (the inverse of a refinement) of Set, which means that

it partially breaches Set’s design. This is done by removing a method from its specialisation clause (in

italics above). CountableSet is a concretisation of Set, as it concretises one of its abstract methods.

In general, inconsistent methods appear when a concretisation is performed of a method that has been

removed from the specialisation clause of the exchanged parent by a coarsening.

We have made an extensive study of possible conflicts when making changes to parent classes and

created a set of rules that allow automatic detection of conflicts based on the interaction of reuse

operators. For a complete discussion we refer to [Steyaert&al96].

Documenting Other Dependencies

A remark must be made about the kind of information that the specialisation interfaces provide. The

specialisation clauses discussed above describe method dependencies purely by name. This could be

extended by including type information or by including semantic information, that specifies, for

example, the order in which methods should be invoked. The art is in finding the right balance between

descriptions that are easily understood and expressed, and descriptions that capture enough of the

semantics of the system part it describes.

While in the work described above reuse contracts were used to study the management of evolving

class hierarchies, we have evidence that this approach is applicable to other and more general reuse

mechanisms. Early results exist on developing reuse contracts for interclass interaction diagrams, which

show that the reuse operators are general enough to be also applicable to other structures than class

hierarchies. Furthermore, similar problems as inconsistent methods can occur when making changes to

the way objects work together and these can also be easily detected. Currently, reuse contracts for state

transition diagrams are also under development and endorse our claims.

We even dare to suggest that reuse contracts have a broader scope than managing change in evolving

systems: they shed light on the architecture of a system, can be used as structured documentation and

can generally assist software engineers in adapting systems to particular requirements.

Environment and Tool Support for Reuse Contracts

This brings us to the subject of software development environments. An environment for managing

software evolution based on the concept of reuse contracts should include tool support for assessing the

impact of making changes to a system by signalling possible problems that (might) occur. A prototype

version of such a tool has been implemented in PROLOG.

The environment can also assist in the synchronisation of reuse contracts and their corresponding

implementations. Two situations can be distinguished. In those parts of the system that have a stable

design, the implementation must be forced to comply to the reuse contract. In those parts that are still

subject to major redesign, it should be possible to make changes to both implementation and reuse

contracts independently. The environment could discretely issue warnings, but should not become a

hindrance.

Finally, for software systems that have not been documented by means of reuse contracts, tools can be

constructed that semi-automatically extract this documentation from the code, based on the calling

structure. The programmer only has to delete the implementation-specific parts of the extracted

documentation, as reuse contracts should include only information relevant to the design. Once the

different reuse contracts have been extracted, the tool can easily compute how the reuse contracts

corresponding to the different parts of the system are related to one another by means of reuse

operators. A prototype implementation of such a tool for Smalltalk classes has been implemented.

Conclusion

Current methodological and tool support for managing the evolution of large, long-lived software

systems, focuses mainly on minimising dependencies between system parts. However, the question

what happens when existing dependencies are changed at some point during the evolution process is

largely neglected. Documenting these dependencies by means of reuse contracts and reuse operators

allows us to signal such changes and to assess their impact. Many tools to support the use of reuse

contracts for managing software evolution can be conceived. When adopted, reuse contracts may

significantly enhance the way in which software is being built and managed.

References

[Kiczales&Lamping92] G. Kiczales, J. Lamping: Issues in the Design and Specification of Class
Libraries, Proceedings of OOPSLA ’92, Conference on Object-Oriented
Programming, Systems, Languages and Applications, pp. 435-451, ACM
Press, 1992.

[Lamping93] J. Lamping: Typing the Specialisation Interface, Proceedings of OOPSLA ’93,
Conference on Object-Oriented Programming, Systems, Languages and
Applications, pp. 201-215, ACM Press, 1993.

[Steyaert&al.96] P. Steyaert, C. Lucas, K. Mens, T. D’Hondt: Reuse Contracts: Managing the
Evolution of Reusable Assets, To appear in Proceedings of OOPSLA‘96
Conference on Object Oriented Programming, Systems, Languages and
Applications, ACM Press 1996.

